3.555 \(\int \frac {\sec ^4(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=301 \[ -\frac {2 (a-b) \sqrt {a+b} \left (8 a^2+9 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^4 d}-\frac {2 \sqrt {a+b} \left (8 a^2-2 a b+9 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^3 d}-\frac {8 a \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{15 b^2 d}+\frac {2 \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d} \]

[Out]

-2/15*(a-b)*(8*a^2+9*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(
1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d-2/15*(8*a^2-2*a*b+9*b^2)*cot(d*x+c)*
EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(
-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d-8/15*a*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b^2/d+2/5*sec(d*x+c)*(a+b*sec(d*
x+c))^(1/2)*tan(d*x+c)/b/d

________________________________________________________________________________________

Rubi [A]  time = 0.42, antiderivative size = 301, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3860, 4082, 4005, 3832, 4004} \[ -\frac {2 \sqrt {a+b} \left (8 a^2-2 a b+9 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^3 d}-\frac {2 (a-b) \sqrt {a+b} \left (8 a^2+9 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^4 d}-\frac {8 a \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{15 b^2 d}+\frac {2 \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(8*a^2 + 9*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (
a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(15*b^4*d) - (2*
Sqrt[a + b]*(8*a^2 - 2*a*b + 9*b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a +
b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(15*b^3*d) - (8*a*Sq
rt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(15*b^2*d) + (2*Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(5*b*
d)

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3860

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*d^2
*Cos[e + f*x]*(d*Csc[e + f*x])^(n - 2)*Sqrt[a + b*Csc[e + f*x]])/(b*f*(2*n - 3)), x] + Dist[d^3/(b*(2*n - 3)),
 Int[((d*Csc[e + f*x])^(n - 3)*Simp[2*a*(n - 3) + b*(2*n - 5)*Csc[e + f*x] - 2*a*(n - 2)*Csc[e + f*x]^2, x])/S
qrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n
]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4082

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m
+ 2)), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*B*
(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sec ^4(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx &=\frac {2 \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac {\int \frac {\sec (c+d x) \left (2 a+3 b \sec (c+d x)-4 a \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{5 b}\\ &=-\frac {8 a \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac {2 \int \frac {\sec (c+d x) \left (a b+\frac {1}{2} \left (8 a^2+9 b^2\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b^2}\\ &=-\frac {8 a \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac {1}{15} \left (9+\frac {8 a^2}{b^2}\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx-\frac {\left (8 a^2-2 a b+9 b^2\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b^2}\\ &=-\frac {2 (a-b) \sqrt {a+b} \left (8 a^2+9 b^2\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^4 d}-\frac {2 \sqrt {a+b} \left (8 a^2-2 a b+9 b^2\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}-\frac {8 a \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 14.59, size = 365, normalized size = 1.21 \[ \frac {2 \sqrt {\sec (c+d x)} \left (\sqrt {\sec (c+d x)} (a \cos (c+d x)+b) \left (\left (8 a^2+9 b^2\right ) \sin (c+d x)+b \tan (c+d x) (3 b \sec (c+d x)-4 a)\right )-\frac {\sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (\left (8 a^2+9 b^2\right ) \cos (c+d x) \tan \left (\frac {1}{2} (c+d x)\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) (a \cos (c+d x)+b)-2 b \left (8 a^2+2 a b+9 b^2\right ) \sqrt {\frac {1}{\sec (c+d x)+1}} \sqrt {\frac {a+b \sec (c+d x)}{(a+b) (\sec (c+d x)+1)}} F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+2 \left (8 a^3+8 a^2 b+9 a b^2+9 b^3\right ) \sqrt {\frac {1}{\sec (c+d x)+1}} \sqrt {\frac {a+b \sec (c+d x)}{(a+b) (\sec (c+d x)+1)}} E\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )\right )}{\sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}}\right )}{15 b^3 d \sqrt {a+b \sec (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^4/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[Sec[c + d*x]]*(-((Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*(8*a^3 + 8*a^2*b + 9*a*b^2 + 9*b^3)*Ellipti
cE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + b)
*(1 + Sec[c + d*x]))] - 2*b*(8*a^2 + 2*a*b + 9*b^2)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[
(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] + (8*a^2 + 9*b^2)*Cos[c + d*x
]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/Sqrt[Sec[(c + d*x)/2]^2]) + (b + a*Cos[c + d*x])*
Sqrt[Sec[c + d*x]]*((8*a^2 + 9*b^2)*Sin[c + d*x] + b*(-4*a + 3*b*Sec[c + d*x])*Tan[c + d*x])))/(15*b^3*d*Sqrt[
a + b*Sec[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sec \left (d x + c\right )^{4}}{\sqrt {b \sec \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sec(d*x + c)^4/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{4}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^4/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 1.66, size = 1584, normalized size = 5.26 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4/(a+b*sec(d*x+c))^(1/2),x)

[Out]

2/15/d*(1+cos(d*x+c))^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(4*cos(d*x+c)^2*a^2*b+3*b^3-9*co
s(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d
*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^3+9*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*c
os(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^
3+10*a*b^2*cos(d*x+c)^3+8*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b
))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3+9*cos(d*x+c)^2*(cos(d*x+c)/(
1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)
/(a+b))^(1/2))*sin(d*x+c)*b^3-9*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c)
)/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^3+8*cos(d*x+c)^3*(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),
((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3-cos(d*x+c)*a*b^2-8*a^2*cos(d*x+c)^3*b+4*cos(d*x+c)^4*a^2*b-9*cos(d*x+c)^4*
a*b^2-8*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF
((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b-2*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*s
in(d*x+c)*a*b^2+8*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)
*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b+9*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(
d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b)
)^(1/2))*sin(d*x+c)*a*b^2-8*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a
+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b-2*cos(d*x+c)^2*(cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((
a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^2+8*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(
d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b+9*cos(d*x+c)^3
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin
(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^2+8*cos(d*x+c)^3*a^3+6*cos(d*x+c)^2*b^3-9*cos(d*x+c)^3*b^3-8*cos(d
*x+c)^4*a^3)/(b+a*cos(d*x+c))/cos(d*x+c)^2/sin(d*x+c)^5/b^3

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{4}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^4/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\cos \left (c+d\,x\right )}^4\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^4*(a + b/cos(c + d*x))^(1/2)),x)

[Out]

int(1/(cos(c + d*x)^4*(a + b/cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec ^{4}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**4/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________